Use Cases Automotive Asset Health Management (AHM)

Asset Health Management (AHM)

Asset Health Management refers to the process of analyzing the health of an asset as determined by operational requirements. The health of an asset in itself relates to the asset's utility, its need to be replaced, and its need for maintenance. It can be broken down into three key components: 1) Monitoring: Tracking the current operating status of the asset. 2) Diagnostic Analysis: Comparing real-time data to historical data in order to detect anomalies. 3) Prognostic Analysis: Identifying and prioritizing specific actions to maximize the remaining useful life of the asset based on analysis of real-time and historical data.
Read More
Digitize Railway with Deutsche Bahn
Digitize Railway with Deutsche Bahn
To reduce maintenance costs and delay-causing failures for Deutsche Bahn. They need manual measurements by a position measurement system based on custom-made MEMS sensor clusters, which allow autonomous and continuous monitoring with wireless data transmission and long battery. They were looking for data pre-processing solution in the sensor and machine learning algorithms in the cloud so as to detect critical wear.
Solid Enterprise Planning, Scheduling, and Compliance Management
Solid Enterprise Planning, Scheduling, and Compliance Management
Ash Grove Cement would like to find a solution in automate maintenance data collection at each facility for a well-defined enterprise asset management process to support equipment performance reliability.
Danish Cell Controller Project
Danish Cell Controller Project
Prior to 1990, most Danish electric power was produced at large, centralized generation plants from which it was transmitted and distributed to commercial, industrial, and residential consumers. Since then, thousands of distributed generators have been added such that the installed generation capacity at the distribution level exceeds the generation capacity at the transmission level. The distributed generation (DG) assets include dispersed combined heat and power (CHP) plants and wind turbines, creating a “carpet” of generation at the low and medium voltage levels of the distribution system (see inset). These distributed resources provide renewable and flexible energy production and support local thermal heating loads but were designed to operate only while grid-connected and could not be used in the case of a major power outage. The high penetration of variable wind generation also created the situation where the transmission system had to balance all the local variability of wind (both real and reactive power).

From 2013 to 2022, the market for overall asset efficiency improvements potentially accumulates to USD 2.5 trillion.

Source: Cisco

Erik Walenza-Slabe
CEO
Adapt-N
Download PDF Version
test test