Accelerating the Industrial Internet of Things
Log In
Use Cases Structural Health Monitoring (SHM)

Structural Health Monitoring (SHM)

Structural health monitoring is a tool used to ensure the safety and soundness of structures. Structural health monitoring uses an assortment of sensors to collect and analyze data pertaining to any damage or deterioration that a structure may receive over the course of its life. The data that structural health monitoring systems acquire can help its users avoid structural failures.

Numerous structural health monitoring systems are available. They differ by cost, quality, purpose, and technology. They use many types of structural health monitoring devices and software systems to analyze the data retrieved from the devices. The type of structural health monitoring system that should be used is specific to the structure or structures being monitored.

Structural health monitoring is used on structures such as bridges, skyscrapers, stadiums, wind turbines, ships, airplanes, and many others.

 

Read More
Kaazing Aims to Protect World Wide Assets Using DisasterAWARE Enterprise
Disaster management, for the past few decades, has taken an unreliable and hardly scalable approach to addressing significant natural catastrophes.
Scaling Data Science for the Industrial IoT
Scaling Data Science for the Industrial IoT
Conventional techniques for extracting and testing algorithms must get smarter to keep pace with the phenomena they’re tracking. The challenges are mainly in the following areas: - Volume, velocity, and variety of data - Unbounded amount of factors that may affect the output - Fast changing environment calls for constantly evolving models
IoT Based Health Monitoring System
IoT Based Health Monitoring System
The primary challenge was to monitor the progress of the plans adopted by the patients. In most cases, the patient will start with a plan and give up in the middle. It is important to motivate them to continue through the plan.

The overall structural health monitoring market was valued at USD 1.24 billion in 2017 and is estimated to reach USD 3.38 billion by 2023, at a CAGR of 17.93% between 2018 and 2023.

Source: Markets and Markets

The global structural health monitoring market size is estimated to reach USD 4.34 billion by 2025.

Source: Grand View Research

Which technologies are used in a system and what are the critical technology?
Your Answer

What is MEMS?

MEMS (Micro Electro Mechanical Systems) capacitive accelerometers are one of the technologies, which addresses the needs of SHM. Because of the flat amplitude and phase response over a large bandwidth, ruggedness and attractive SWAP characteristics MEMS technology enable the increasing use of vibration sensing for SHM.

MEMS accelerometers use capacitive coupling to detect the motion of a suspended proof mass in response to external acceleration. A fabrication process that we utilize “bakes” the MEMS at the very high temperatures. This fabrication design guarantees very good performance repeatability in both – the temperature and the time. Obtained capacitive MEMS devices will measure from very low frequencies (<<1Hz) to high frequencies.

How many types of sensors have been developed for SHM?

- Contact-based sensors (such as microelectromechanical sensors)

- Noncontact sensors (such as air-coupled sensors, vision sensors using cameras, wireless rechargeable sensor networks, and radar sensor networks)

 

What business, integration, or regulatory challenges could impact deployment?
Your Answer

What are the key challenges for structural health monitoring systems?

- It is not a commodity purchase: due to the engineering costs and lack of resource availability associated with incorporating a SHM system into a structure, many organizations opt to forego deploying one. 

- Many structural health monitoring systems rely on point sensors, or sensors that obtain data about only one point, to monitor asset: using point sensors in SHM systems is limiting since these systems must use interpolation to simulation additional measurement locations.

 

- Data normalization: this is the process of separating changes in sensor output caused by damage and changes caused by varying environmental conditions. Since most SHM systems do not continuously monitor, it is difficult to normalize the data (especially when point sensors are used to collect the information).

What is the most important SHM Performance Requirement?

Resolution is the most important performance requirement for the sensors used for SHM application. Damage in a structure appears as a tiny variation at first, but it is amplified with the aging of the structure. A sensor with an excellent resolution will reveal a failure at the very early stages. Thus accomplishing high-performance monitoring of critical structures allows a significant optimization in its maintenance planning and, consequently, reduces the operating costs in a drastic way.

What are the most critical missions in SHM?

- Discovering how to determine damage-sensitive features

- How to extract information about them from the data measured by sensors, in order to detect damage or changes to systems

Download PDF Version
test test