Use Cases Building Energy Management System (BEMS)

Building Energy Management System (BEMS)

Building Energy Management Systems (BEMS) are computer-based systems that help to manage, control and monitor building technical services (HVAC, lighting etc.) and the energy consumption of devices used by the building. They provide the information and the tools that building managers need both to understand the energy usage of their buildings and to control and improve their buildings’ energy performance.

HVAC (heating, ventilating, and air conditioning) is the technology of indoor environmental control. Its goal is to manage air temperature, humidity, and quality to meet the needs of both people and industrial processes. With low-cost sensors, wireless connectivity and more powerful data processors, HVAC companies are now able to collect real-time performance data and monitor the condition of their equipment. Remote monitoring solutions can monitor hard to reach areas and sites in order to alert staff to breakage and heat or water damage in a cable. IoT can help the HVAC industry improve overall equipment effectiveness and save money by minimizing equipment failure and optimizing energy usage and performance levels.

 

 

Read More
Data meets nature: One of the greenest data centers
Data meets nature: One of the greenest data centers
Green Mountain is consuming data at an unprecedented pace: 3 billion Facebook videos viewed daily; 300 hours of video uploaded to YouTube every hour. In today’s data-driven world, the uptime of colocation data centers – vast banks of servers that process everything from online videos to financial assets – is essential. Delivering secure and reliable data center services can come at an environmental cost though: energy use in data centers today contributes to 2% of global CO2 emissions. They want one colocation facility, built in a former NATO bunker buried deep within a mountain, turn the tables and use the power of nature to become one of the world’s most reliable and sustainable data centers.
Siemens Industry: Manufacturing, Process Control & Automation
Siemens Industry: Manufacturing, Process Control & Automation
Building control systems have traditionally managed heating, ventilation and air conditioning (HVAC) separately from other systems. Siemens Industry, Inc., envisioned a greater sophistication: Why not build a control system that would co-ordinate all these variables, as well as monitor building humidity, fire alarms, door locks, security, lighting and other building features, all while collecting historical data and storing network configuration information?
Smooth Transition to Energy Savings
Smooth Transition to Energy Savings
The building was equipped with four end-of-life Trane water cooled chillers, located in the basement. Johnson Controls installed four York water cooled centrifugal chillers with unit mounted variable speed drives and a total installed cooling capacity of 6,8 MW. Each chiller has a capacity of 1,6 MW (variable to 1.9MW depending upon condenser water temperatures). Johnson Controls needed to design the equipment in such way that it would fit the dimensional constraints of the existing plant area and plant access route but also the specific performance requirements of the client. Morgan Stanley required the chiller plant to match the building load profile, turn down to match the low load requirement when needed and provide an improvement in the Energy Efficiency Ratio across the entire operating range. Other requirements were a reduction in the chiller noise level to improve the working environment in the plant room and a wide operating envelope coupled with intelligent controls to allow possible variation in both flow rate and temperature. The latter was needed to leverage increased capacity from a reduced number of machines during the different installation phases and allow future enhancement to a variable primary flow system.

The Global Energy Management Systems Market size is expected to reach USD 62.3 billion by 2023, from USD 25.9 billion in 2016, growing at a CAGR of 13.5% during the forecast period (2017-2023).

Source: Allied Market Research

The HVAC controls market was valued at USD 13.63 billion in 2018 and is expected to reach USD 27.04 billion by 2023, at a CAGR of 12.1% between 2018 and 2023.

Source: Markets & Markets

 

What is the business value of this IoT use case and how is it measured?
Your Answer

How is Building Energy Management Systems (BEMS) used by end users?

Automating room controls or guests as a method to manage energy costs. Lower shared automatically based on the time of day to mitigate the heat load on the room. When occupied, guests would have access to the remote control which would have modes such as "good night scene", "morning scene" and video recorder to see outside the room.

How is the success of this use case measured for users and for the business?

Success can be measured by increasing the operational and financial performance of buildings and by optimizing building operations while improving productivity.

Why do companies need a BEMS?

- To save money: a BEMS can efficiently control as much as 84% of the building's energy consumption. Furthermore, it performs its functions completely automatically, day in, day out, year after year without the need for much interaction.

- To control the energy usage: BEMS can record actual consumption data and then compare it against these profiles highlighting over or under usage.

- To be made aware of issues before they become problems: a BEMS should receive and communicate different levels of alarm conditions, allowing building owners or users to track conditions and respond quickly if the need arises.

- To provide assets with the correct environment: it provides owners with the satisfactory data that enables to control and monitor the building, whilst at the same time providing a suitable working environment for the people or objects within.

- To ensure building continuity: it allows the compatibility between new products with products already installed, removing the need to replace perfectly good equipment whilst at the same time securing investments already made in training and system knowledge.

- To integrate across all building services: systems should be able to integrate to 3rd party systems or products such as packaged units, underfloor heating (which prevents differing set points and system fighting), lighting control or Access system signals etc..

- To meet social and corporate responsibilities objectives: it provides reports and demonstrates visually how energy usage and carbon emissions are being reduced, helping to meet legislative and corporate social responsibility demands.

 

Which technologies are used in a system and what are the critical technology?
Your Answer

What sensors are typically used to provide Room Automation data into the IoT system, and which factors define their deployment?

Sensors that control lighting, drapes, shades, thermostats.

What factors define the connectivity solutions used to provide both device-to-device and device-to-cloud communication?

Could be retrofitted with ZWAVE in a brownfield. Wireless is the most efficient even in a greenfield situation. Mesh communication system that is self-healing. If a node is broken or disrupted by another device it would be self-healing.

 

What business, integration, or regulatory challenges could impact deployment?
Your Answer

What factors impact the installation of a Building Energy Management System (BEMS) in an existing building?

Installing sensors and actuators when the facility is operating can be challenging due to the potential disruption to operations. Disruption can be minimized by deploying the system floor by floor so only a section of the facility is closed at any given time. 

 

Download PDF Version
test test