Trends in Industrial Edge Computing

Improvements in edge computing infrastructure and edge analytics software are enabling the next generation of Industrial IoT applications.
The origins of edge computing lie in content delivery networks created in the late 1990s to serve web content from edge servers deployed close to users.

Edge computing involves hardware and software technologies that enable storage, computing, processing and networking close to the device that generates or consumes data.

‘**Close**’ is a relative term that could include: servers co-located with cell towers, on premise servers, gateways, and operational devices.
Modern edge computing significantly extends this approach with virtualization technology that enables deployment on a wide range of devices.
Edge computing moves compute power closer to the data generation source, but computing can be done at multiple points in the edge stack.
The most common locations to deploy edge computing capabilities are on edge devices (on asset), edge gateways, and edge nodes (on premise).

<table>
<thead>
<tr>
<th>Edge hardware types</th>
<th>FIELD TO EDGE DEVICE</th>
<th>FIELD TO EDGE GATEWAY</th>
<th>FIELD TO EDGE NODES</th>
<th>CLOUD COMPUTING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors, system on chips, embedded systems</td>
<td>Mobile phones, cars, tablets, smart gateways</td>
<td>Base station data centers, smart routers, smart switches, small data centers located up to 5km from point of data generation / end user</td>
<td>Server farms at remote locations connected to end users / data generation devices mostly by cellular networks</td>
<td></td>
</tr>
</tbody>
</table>

Compute power	Low to very low	Medium (no special hardware requirements like GPUs)	High	Almost limitless
Storage	Low to very low	Medium to low	High	Almost limitless
Latency (average)	< 3 ms	< 10 ms	10 – 40 ms	> 100 ms
Cost of data transport from source of data generation	Low	Low	Medium	High
Role in edge computing	Single computations and simple communications	Platform for devices on lower layers to communicate with each other, translate commands from uppers layers to lower layers	Routing network traffic	Long term storage, coordinate lower layers, compute irregular tasks
Advanced mobility uses edge computing to enable situational awareness for either a human driver or an autonomous vehicle.

WEATHER RIGHT HERE
Winds at 3MPH NNW
Air temperature here 71°F
Rain Likelihood 39% next hour

TRAFFIC VECTORS
Right turn: avg. speed 2MPH
Left turn: 16MPH
Straight ahead: road blocked

ROAD HAZARDS
Construction this block: right side
Construction ahead: road blocked

PARKING
Available spots at your destination 72

CHARGING STATIONS
Seven within ten-block radius
Next available predicted 13 mins.
Park & 57th Tesla-compatible

Source: Terbine
City governments and retailers use edge computing to provide location specific information to employees and customers.
Facility managers use edge computing to track the status of operations, manage site security, and optimize processes in real time.
Four imperatives are driving adoption of edge computing as an alternative to cloud computing.

Edge computing is a tool for IoT:

- IoT is a network of OT devices and IT systems that are integrated to bring the capabilities of the Internet (or Intranet) to the physical world.
- Edge computing is a tool to enable IoT use cases. Edge computing adds intelligence to edge devices so that data can be processed closer to the point of data generation without relying on the cloud.

Edge computing adoption drivers:

1. Low Latency. Edge computing reduces latency since data travels a shorter distance from origin to processor to actuator.

2. Privacy and Security. Data resides near the device that originated it, thereby reducing privacy and security risks related to data transport and storage on the cloud.

3. Difficulty of Sending Data to the Cloud. Large data sets or data in far away locations without reliable connectivity is expensive and/or infeasible to transport to the cloud. Edge computing enables processing to occur close to where the data originates.

Source: IoT ONE, Gartner
Many industrial use cases are viable with cloud computing but would have improved performance and/or lower operating costs with edge computing.

Application View: Use Case Necessity

<table>
<thead>
<tr>
<th>Use Case Necessity</th>
<th>Edge computing necessity</th>
<th>Latency requirements</th>
<th>Difficulty of sending data to the cloud</th>
<th>Data privacy requirement</th>
<th>Total Case Study Tagged</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process Monitoring</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Process Control & Optimization</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Computer Vision System</td>
<td>2.3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Visual Quality Inspection</td>
<td>2.3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Collaborative Robotics</td>
<td>2.3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Smart Traffic Management / Traffic Lights</td>
<td>2.3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>Self Driving Vehicles</td>
<td>2.3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Facility Energy Management</td>
<td>2.3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Predictive Maintenance</td>
<td>2.0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>AGV Operations</td>
<td>2.0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Asset Condition Monitoring</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>OEE / Performance Optimization</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Product Customization</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Environment Monitoring</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Remote Maintenance</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>AR / VR Supported Maintenance</td>
<td>1.7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Remote Monitoring & Control Systems</td>
<td>1.3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>Vehicle Fleet Management</td>
<td>1.0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

1. Necessity: Average of the scale of latency requirements, difficulty of sending data to the cloud and data security requirements.

Source: IoT ONE
A study of 50 market leaders and 100 high growth startups identified engagement in the edge computing market by a wide variety of companies.

<table>
<thead>
<tr>
<th>All Companies (n = 150)</th>
<th>End User</th>
<th>HW - Components</th>
<th>HW - Edge Devices</th>
<th>HW - Industrial Equipment</th>
<th>ICT - Cloud</th>
<th>ICT - Connectivity</th>
<th>SW - Cloud</th>
<th>SW - Edge</th>
<th>SW - Traditional</th>
<th>System Integrator</th>
<th>Total by Layer</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applications Layer</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>36</td>
</tr>
<tr>
<td>Platform Layer - PaaS</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
<td>11</td>
<td>5</td>
<td>15</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>62</td>
</tr>
<tr>
<td>Platform Layer - Analysis & Modelling</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>6</td>
<td>18</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td>Infrastructure Layer - Middleware</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Infrastructure Layer - Connectivity</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>11</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>25</td>
</tr>
<tr>
<td>Device Layer</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>8</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>Smart Camera / Machine Vision</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Field Equipment</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>Cybersecurity & Privacy</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Source: IoT ONE
© IoT ONE Limited | www.iotone.com
The market is currently focused on infrastructure deployment but will shift to application deployment within 3-5 years.

Importance in Edge Computing Ecosystem

<table>
<thead>
<tr>
<th>Importance</th>
<th>Low</th>
<th>Very High</th>
<th>Very High</th>
<th>High</th>
<th>High</th>
<th>Very High</th>
<th>Medium</th>
<th>Very High</th>
<th>Low</th>
<th>Low</th>
</tr>
</thead>
</table>

Market Attractiveness

<table>
<thead>
<tr>
<th>Attractiveness</th>
<th>End User</th>
<th>HW - Components</th>
<th>HW - Edge Devices</th>
<th>HW - Industrial Equipment</th>
<th>ICT - Cloud</th>
<th>ICT - Connectivity</th>
<th>SW - Cloud</th>
<th>SW - Edge</th>
<th>SW - Traditional</th>
<th>System Integrator</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>High</td>
<td></td>
</tr>
<tr>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
<tr>
<td>Very High</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td></td>
</tr>
</tbody>
</table>

1 Importance in edge computing ecosystem is calculated by their participation in current and future growth trends and profitability

2 Market attractiveness is calculated by market saturation and future growth potential and profitability

Source: IoT ONE
Example: Foghorn is a software company that offers a platform for deploying advanced AI applications on low-powered edge hardware.

Foghorn’s Edge AI platform is a highly compact and feature-rich edge solution that delivers low latency for onsite data processing, real-time analytics, machine learning and AI capabilities.

ECOSYSTEM VIEW

- **Founded:** 2014
- **Employee Range:** 200-300
- **Total Funding Amount:** $72.5M
- **Funding round:** Series C

FogHorn Lightning™ Edge Software

Stream processing and ML, AI execution

Sensors & Control Data

- Video
- Vibration
- Audio
- 3D Imaging
- Temperature
- Pressure
- Velocity
- Events

Data Ingestion

Data Enrichment

VEL™ Complex Event Processing

EdgeML™ and AI

Publish Insights

Actionable Insights

- Cloud, Data Center or IT Systems
- Alerts to Operators
- Control Signals to Assets

VEL Complex Event Processing

- Performs real time analysis of sensor data
- Optimized compute environments that have limited or no connectivity
- Detects events in real-time, enabling immediate closed loop control actions

EdgeML

- Reduces machine learning model size and required memory
- Execute neural net models in constrained compute environments

OT Centric Toolkit

- Visualize sensor data for streaming analytics
- Create new analytic expressions
- Troubleshoot

Source: FogHorn
Example: Terbine facilitates IoT data transactions in real time through local nodes that are integrated into 5G cell towers.

• Founded: 2015
• Employee Range: 30-50
• Total Funding Amount: $10M (est.)
• Funding round: Series A

Terbine brings together and contextualizes sensor-generated IoT data. Users can access third party data feeds to power their applications or build machine learning algorithms.
Definitions

<table>
<thead>
<tr>
<th>Category</th>
<th>Term</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company Type</td>
<td>ICT - Cloud</td>
<td>Companies who are traditionally cloud service providers.</td>
</tr>
<tr>
<td>Company Type</td>
<td>ICT - Connectivity</td>
<td>Companies who are traditionally providing connectivity services and infrastructure.</td>
</tr>
<tr>
<td>Company Type</td>
<td>End User</td>
<td>Companies who are traditionally end users of technology but now also offer edge solutions, either through the parent company or subsidiary.</td>
</tr>
<tr>
<td>Company Type</td>
<td>Software</td>
<td>Companies who are providing traditional enterprise software, cloud based software, SaaS, or edge first software.</td>
</tr>
<tr>
<td>Company Type</td>
<td>SW – Cloud</td>
<td>Companies who are traditionally providing cloud based software, usually a SaaS, but also have edge offerings.</td>
</tr>
<tr>
<td>Company Type</td>
<td>SW – Traditional</td>
<td>Companies who are traditionally providing traditional enterprise software, usually on-premise, but also have edge offerings.</td>
</tr>
<tr>
<td>Company Type</td>
<td>SW – Edge</td>
<td>Companies who provide software that are purpose built for the edge / edge first software.</td>
</tr>
<tr>
<td>Company Type</td>
<td>System Integrator</td>
<td>Companies who traditionally integrate systems but now also offer edge solutions.</td>
</tr>
<tr>
<td>Company Type</td>
<td>Hardware</td>
<td>Companies who offer hardware components, edge devices, or industrial equipment.</td>
</tr>
<tr>
<td>Company Type</td>
<td>HW – Components</td>
<td>Companies who are providing components of a device.</td>
</tr>
<tr>
<td>Company Type</td>
<td>HW – Edge Devices</td>
<td>Companies who are providing integrated devices with computing power.</td>
</tr>
<tr>
<td>Company Type</td>
<td>HW – Industrial Equipment</td>
<td>Companies who are providing industrial equipment and machinery as their core business but also have edge offerings.</td>
</tr>
<tr>
<td>Tech Stack Layer</td>
<td>Field Layer</td>
<td>Assets and devices that produce data and are to be controlled. They are typically machinery and equipment.</td>
</tr>
<tr>
<td>Tech Stack Layer</td>
<td>Smart Camera / Machine Vision</td>
<td>Cameras that can perform machine vision tasks and machine vision software. They typically have processing chips embedded to process data on-site.</td>
</tr>
<tr>
<td>Tech Stack Layer</td>
<td>Edge Layer</td>
<td>Devices who have intelligent functions to process and store data, as well as send commands down to the field layer. They include gateways, servers, laptops, etc.</td>
</tr>
<tr>
<td>Tech Stack Layer</td>
<td>Cloud Layer</td>
<td>Cloud hosted infrastructure and platforms that store and process data. These cloud functions support edge computing by acting as control layers or processing support.</td>
</tr>
<tr>
<td>Tech Stack Layer</td>
<td>Application Layer</td>
<td>Applications that are run on the edge.</td>
</tr>
<tr>
<td>Supporting Tech</td>
<td>Analysis & Modelling</td>
<td>Analytics and modelling technologies that can be used at the edge. Usually used in cloud platforms or in functional applications for developing analytics applications.</td>
</tr>
<tr>
<td>Supporting Tech</td>
<td>App Infrastructure & Middleware</td>
<td>The predominantly software layer between the hardware and the software on a device. In our report, this includes operating systems and firmware.</td>
</tr>
<tr>
<td>Supporting Tech</td>
<td>Cybersecurity & Privacy</td>
<td>Cybersecurity hardware, software and services, that can be used to secure nodes and devices, and the connections and communications between them.</td>
</tr>
<tr>
<td>Supporting Tech</td>
<td>Networks & Connectivity</td>
<td>Networking hardware, software, and services to connect between field and edge, excluding connectivity to cloud.</td>
</tr>
</tbody>
</table>
Our mission is to increase the competitiveness of our clients by helping them to realize the opportunities and manage the threats that are created by digitalization.

Will you disrupt or be disrupted by the Internet of Things?

The first Internet wave disrupted retail, media and finance. Traditional market leaders declined and new leaders emerged.

The second Internet wave is now disrupting how products and operations create value. It will impact every company that builds or operates physical infrastructure, assets and devices. We help companies evolve and grow their businesses.

We are known for:

• Expertise in the interface between technology and business.

• A strong foundation in detailed, bottom-up research.

• Deep engagement with domain experts and tech ecosystems.

IoT ONE delivers research services globally and innovation plus implementation in Asia.
IoT ONE Knowledge Domains

Microenvironment

Use Cases
What problems can you solve for your customers or operations?

Technology Stack
Which technologies enable your use case?

Business Models
How do you package, price and sell digital offerings?

Company Ecosystems
Which companies are relevant to your strategy?

Opportunity Size
Implementation Feasibility

Macroenvironment

What external factors impact solution development, market adoption or system deployment?

© IoT ONE Limited | www.iotone.com
Insight & Implementation Services

01 Do you have the information you need to plan and execute a winning IoT strategy?

RESEARCH
Knowledge is power.
We provide the bottom up information you need to successfully transform your products and operations.

- Market & Trend Analysis
- Benchmarking Analysis
- Company Scouting

02 Is your current organization able to execute your digital strategy?

ENABLE
Change is accelerating.
We help companies upskill management, design innovation teams, and establish ecosystems.

- Management Upskilling
- Innovation Team Development
- External Ecosystem Development

03 Can you ideate, build, and deploy digital solutions rapidly and cost-efficiently?

GROW
Speed wins.
We develop and implement strategies to grow revenue through product and business model innovation.

- Digital Value Diagnostic
- Core Business Transformation
- New Business Innovation
Selected IoT ONE Clients

<table>
<thead>
<tr>
<th>Equipment/Machinery</th>
<th>Industrial Automation</th>
<th>Software</th>
<th>IoT Components</th>
<th>Life Science/Material Science</th>
<th>Service Firms/Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosch</td>
<td>Siemens</td>
<td>PTC</td>
<td>Bics</td>
<td>Merck</td>
<td>World Economic Forum</td>
</tr>
<tr>
<td>Bobst</td>
<td>General Electric</td>
<td>AWS</td>
<td>Wibu Systems</td>
<td>Bayer</td>
<td>Oak Ridge National Laboratory</td>
</tr>
<tr>
<td>Palfinger</td>
<td>Körber Digital</td>
<td>Qlik</td>
<td>TE Connect</td>
<td>Covestro</td>
<td>RANEPa</td>
</tr>
<tr>
<td>Desoutter</td>
<td>Körber Logistics</td>
<td>Bright Wolf</td>
<td>EPLAN</td>
<td>Clariant</td>
<td>McKinsey & Company</td>
</tr>
<tr>
<td>SKF</td>
<td>Voith</td>
<td>VantiQ</td>
<td>L'Oréal</td>
<td>L'Oréal</td>
<td>Bain & Company</td>
</tr>
<tr>
<td>Lenze</td>
<td>Blacklake</td>
<td>Lenovo</td>
<td>RS</td>
<td>Michelin</td>
<td>TÜV SUD</td>
</tr>
<tr>
<td>strataSys</td>
<td>NavVis</td>
<td>Auvsey</td>
<td>Lyreco</td>
<td>FrieslandCampina</td>
<td></td>
</tr>
<tr>
<td>Bouygues Construction</td>
<td>Werma Signaltechnik</td>
<td>Zco Corporation</td>
<td>Astrata</td>
<td>Betty Barclay</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Opportunity Prioritization

CLIENT
Construction Equipment Manufacturer

CHALLENGE
“Our core products are becoming commoditized. We need to evolve our solutions and our business model to remain competitive.”

OBJECTIVES
- Identify new growth opportunities that will mature over a 7-10 year period and can be addressed through new data-driven solutions or business models.
- Evaluate the core technologies that underlay new offerings.
- Identify and prioritize technology partners to fill digital capability gaps.

APPROACH
IoT ONE teams worked closely with the client to scope opportunities, evaluate attractiveness and “right to win” and define an implementation roadmap.

RESULTS
- 5 new growth opportunities were prioritized for implementation in 2019-20.
- 200+ technology suppliers were analyzed, with 25 short listed for solution support.
CLIENT
Global Top 3 Dairy Product Company

CHALLENGE
“The Chinese market is evolving dynamically. We need to develop new ways to engage with our Chinese customer base.”

OBJECTIVES
- Establish an internal accelerator in China to accelerate the localization process.
- Ideate new products and digital engagement platforms to drive organic growth.
- Bring new offerings to market after establishing product-market fit.

APPROACH
Three client teams led ideation, solution development, and validation. IoT ONE supported program setup and execution from end-to-end.

01 Discover new growth opportunities through direct customer engagement
02 Validate product-market fit for high potential ideas
03 Build MVPs and test solutions in the market to build a business case

RESULTS
- The 3 teams tested 12 product or digital solution ideas over a 3 month period.
- 2 of the 3 teams secured go-to-market financing from the investment committee.
Define buyer personas for target customer segments
Prioritize use cases & buyer decision criteria
Refine value propositions for new personas
Develop IoT prospecting kit to enable sales

OBJECTIVES

- Identify the differences in requirements and procurement processes between four customer segments: ISVs, platforms, cloud infrastructure providers, device OEMs.
- Develop an IoT sales strategy and prospecting kit to enable market expansion.

APPROACH

IoT ONE worked closely with the client team to provide domain expertise required to build all aspects of the IoT go-to-market approach, from strategy to messaging.

1. Define buyer personas for target customer segments
2. Prioritize use cases & buyer decision criteria
3. Refine value propositions for new personas
4. Develop IoT prospecting kit to enable sales

RESULTS

- 5 buyer personas and 7 use cases were prioritized for initial sales focus.
- The entire analytics portfolio sales team was trained to use the prospecting kit.
Trends in Industrial Edge Computing

Erik Walenza
CEO, IoT ONE
erik.walenza@iotone.com
+86 156 0183 9705